

ADC AND ASL BCC BCS BEQ BIT

BMI BNE BPL BRK BVC BVS CLC

CLD CLI CLV CMP CPX CPY DEC

DEX DEY EOR INC INX INY JMP

JSR LDA LDX LDY LSR NOP ORA

PHA PHP PLA PLP ROL ROR RTI

RTS SBC SEC SED SEI STA STX

STY TAX TAY TSX TXA TXS TYA

Assembly Language
Hashdump Security Club

High-level languages

● Provide convenient abstractions
to help programmers

– Variables, objects, if-else
statements, loops, etc.

● But these are an abstraction:
actual logic is more complex

● Your CPU doesn't understand C,
Java, or Python on its own

Machine language & assembly

● Compilers/interpreters translate high-level
languages into machine code

– Short sequences of bytes

– Fundamental operations supported by CPU

● Assembly language: human-readable text
representation of machine code

– Can be translated to machine language
using an assembler

● Conversely, the code on the right was
disassembled from a compiled binary

– Will revisit this in a moment

Address Machine code Assembly instructions

Ghidra disassembly of C “Hello World”

Instruction set architecture (ISA)
● Different CPUs support

different instructions
● Most desktops/laptops

use x86_64
● Another common

architecture: ARM
– Phones, MacBooks,

Raspberry Pis

Memory hierarchy
● Main memory: Random-access memory

(RAM)

● Cache: Recently/frequently-used memory

● Registers: Data actively being used

– Instructions often operate directly on
registers

● Unlike RAM, registers and cache are part of
the CPU itself

– Caching compensates for RAM latency,
but registers are still the fastest

– However, registers are also smallest in
size

Registers

Cache

Main memory

Instruction set example
● MOS Technology 6502 processor

● Used on NES, Apple II, and Atari 2600, among others

● Considerably smaller instruction set as compared to x86

Register Description

Program counter How far the CPU is along the program

X, Y General-purpose registers

A Accumulator (more math/binary operations)

Example instruction Description

LDA, LDX, LDY Load a value from RAM into register

STA, STX, STY Store a value from a register into RAM

INX, INY, DEX, DEY Increment/decrement register

JMP Jump (move the program counter) to a
different part of the program

Revisiting x86 Hello World

Register
Description

64-bit 32-bit

RBP EBP Stack Base Pointer

RSP ESP Stack Pointer

RDI EDI Destination

RSI ESI Source

RAX EAX Accumulator

Instruction Args Description

PUSH val Push onto stack

MOV dst,src Move (copy) value

SUB loc amt Subtract

LEA dst,val Load Effective Address

CALL proc Call Procedure

LEAVE High Level Procedure Exit

RET Return From Procedure Note: This is a disassembly of C code, not how
you would implement Hello World in pure ASM.

Plain x86 (no C library)

References
[1] J. Pickens, B. Clark, and E. Spittles, “6502.org: NMOS 6502 Opcodes.” Accessed: Sept. 07, 2025. [Online]. Available:

http://www.6502.org/tutorials/6502opcodes.html

[2] N. Animal, “Answer to ‘What is the purpose of the RBP register in x86_64 assembler?,’” Stack Overflow. Accessed: Sept. 07, 2025.
[Online]. Available: https://stackoverflow.com/a/41914096

[3] “CPU Registers x86 - OSDev Wiki.” Accessed: Sept. 07, 2025. [Online]. Available: https://wiki.osdev.org/CPU_Registers_x86

[4] “Hello World Program in x86 Assembly Language.” Accessed: Sept. 07, 2025. [Online]. Available:
https://www.learningaboutelectronics.com/Articles/Hello-world-in-x86-assembly.php

[5] “INT 10H,” Wikipedia. June 19, 2025. Accessed: Sept. 07, 2025. [Online]. Available: https://en.wikipedia.org/w/index.php?
title=INT_10H&oldid=1296382288

[6] “MOS Technology 6502,” Wikipedia. Sept. 04, 2025. Accessed: Sept. 07, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/MOS_Technology_6502

[7] “Nintendo Entertainment System,” Wikipedia. Sept. 02, 2025. Accessed: Sept. 07, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Nintendo_Entertainment_System

[8] J. Stokes, “Understanding CPU caching and performance,” Ars Technica. Accessed: Sept. 07, 2025. [Online]. Available:
https://arstechnica.com/gadgets/2002/07/caching/

[9] “x86 and amd64 instruction reference.” Accessed: Sept. 07, 2025. [Online]. Available: https://www.felixcloutier.com/x86/

ActivityActivity: SHENZHEN I/O

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

